<< Chapter < Page Chapter >> Page >
The internal structure of a finger with tendon, extensor muscle, and flexor muscle is shown. The force in the muscles is shown by arrows pointing along the tendon. In the second figure, part of a bicycle with a brake cable is shown. Three tension vectors are shown by the arrows along the brake cable, starting from the handle to the wheels. The tensions have the same magnitude but different directions.
(a) Tendons in the finger carry force T size 12{T} {} from the muscles to other parts of the finger, usually changing the force’s direction, but not its magnitude (the tendons are relatively friction free). (b) The brake cable on a bicycle carries the tension T size 12{T} {} from the handlebars to the brake mechanism. Again, the direction but not the magnitude of T size 12{T} {} is changed.

What is the tension in a tightrope?

Calculate the tension in the wire supporting the 70.0-kg tightrope walker shown in [link] .

A tightrope walker is walking on a wire. His weight W is acting downward, shown by a vector arrow. The wire sags and makes a five-degree angle with the horizontal at both ends. T sub R, shown by a vector arrow, is toward the right along the wire. T sub L is shown by an arrow toward the left along the wire. All three vectors W, T sub L, and T sub R start from the foot of the person on the wire. In a free-body diagram, W is acting downward, T sub R is acting toward the right with a small inclination, and T sub L is acting toward the left with a small inclination.
The weight of a tightrope walker causes a wire to sag by 5.0 degrees. The system of interest here is the point in the wire at which the tightrope walker is standing.

Strategy

As you can see in the figure, the wire is not perfectly horizontal (it cannot be!), but is bent under the person’s weight. Thus, the tension on either side of the person has an upward component that can support his weight. As usual, forces are vectors represented pictorially by arrows having the same directions as the forces and lengths proportional to their magnitudes. The system is the tightrope walker, and the only external forces acting on him are his weight w size 12{w} {} and the two tensions T L size 12{T rSub { size 8{L} } } {} (left tension) and T R size 12{T rSub { size 8{R} } } {} (right tension), as illustrated. It is reasonable to neglect the weight of the wire itself. The net external force is zero since the system is stationary. A little trigonometry can now be used to find the tensions. One conclusion is possible at the outset—we can see from part (b) of the figure that the magnitudes of the tensions T L size 12{T rSub { size 8{L} } } {} and T R size 12{T rSub { size 8{R} } } {} must be equal. This is because there is no horizontal acceleration in the rope, and the only forces acting to the left and right are T L size 12{T rSub { size 8{L} } } {} and T R size 12{T rSub { size 8{R} } } {} . Thus, the magnitude of those forces must be equal so that they cancel each other out.

Whenever we have two-dimensional vector problems in which no two vectors are parallel, the easiest method of solution is to pick a convenient coordinate system and project the vectors onto its axes. In this case the best coordinate system has one axis horizontal and the other vertical. We call the horizontal the x size 12{x} {} -axis and the vertical the y size 12{y} {} -axis.

Solution

First, we need to resolve the tension vectors into their horizontal and vertical components. It helps to draw a new free-body diagram showing all of the horizontal and vertical components of each force acting on the system.

A vector T sub L making an angle of five degrees with the negative x axis is shown. It has two components, one in the vertical direction, T sub L y, and another horizontal, T sub L x. Another vector is shown making an angle of five degrees with the positive x axis, having two components, one along the y direction, T sub R y, and the other along the x direction, T sub R x. In the free-body diagram, vertical component T sub L y is shown by a vector arrow in the upward direction, T sub R y is shown by a vector arrow in the upward direction, and weight W is shown by a vector arrow in the downward direction. The net force F sub y is equal to zero. In the horizontal direction, T sub R x is shown by a vector arrow pointing toward the right and T sub L x is shown by a vector arrow pointing toward the left, both having the same length so that the net force in the horizontal direction, F sub x, is equal to zero.
When the vectors are projected onto vertical and horizontal axes, their components along those axes must add to zero, since the tightrope walker is stationary. The small angle results in T size 12{T} {} being much greater than w size 12{w} {} .

Consider the horizontal components of the forces (denoted with a subscript x size 12{x} {} ):

F net x = T L x T R x size 12{F rSub { size 8{"net x"} } = T rSub { size 8{"Lx"} } - T rSub { size 8{"Rx"} } } {} .

The net external horizontal force F net x = 0 size 12{F rSub { size 8{"net x"} } = 0} {} , since the person is stationary. Thus,

F net x = 0 = T L x T R x T L x = T R x . alignl { stack { size 12{F rSub { size 8{"net x"} } =0=T rSub { size 8{"LX"} } - T rSub { size 8{"Rx"} } } {} #T rSub { size 8{"Lx"} } = T rSub { size 8{"Rx"} } {} } } {}

Now, observe [link] . You can use trigonometry to determine the magnitude of T L size 12{T rSub { size 8{L} } } {} and T R size 12{T rSub { size 8{R} } } {} . Notice that:

cos ( 5.0º ) = T L x T L T L x = T L cos ( 5.0º ) cos ( 5.0º ) = T R x T R T R x = T R cos ( 5.0º ) . alignl { stack { size 12{"cos" \( 5 "." 0° \) = { {T rSub { size 8{"Lx"} } } over {T rSub { size 8{L} } } } } {} #T rSub { size 8{"Lx"} } =T rSub { size 8{L} } "cos" \( 5 "." 0° \) {} # "cos" \( 5 "." 0° \) = { {T rSub { size 8{"RX"} } } over {T rSub { size 8{R} } } } {} #T rSub { size 8{"Rx"} } =T rSub { size 8{R} } "cos" \( 5 "." 0° \) {} } } {}

Equating T L x size 12{T rSub { size 8{"Lx"} } } {} and T R x size 12{T rSub { size 8{"Rx"} } } {} :

T L cos ( 5.0º ) = T R cos ( 5.0º ) size 12{T rSub { size 8{L} } "cos" \( 5 "." 0° \) =T rSub { size 8{R} } "cos" \( 5 "." 0° \) } {} .

Thus,

T L = T R = T size 12{T rSub { size 8{L} } =T rSub { size 8{R} } =T} {} ,

as predicted. Now, considering the vertical components (denoted by a subscript y size 12{y} {} ), we can solve for T size 12{T} {} . Again, since the person is stationary, Newton’s second law implies that net F y = 0 size 12{F rSub { size 8{y} } =0} {} . Thus, as illustrated in the free-body diagram in [link] ,

Questions & Answers

it is the relatively stable flow of income
Chidubem Reply
what is circular flow of income
Divine Reply
branches of macroeconomics
SHEDRACK Reply
what is Flexible exchang rate?
poudel Reply
is gdp a reliable measurement of wealth
Atega Reply
introduction to econometrics
Husseini Reply
Hi
mostafa
hi
LEMLEM
hello
Sammol
hi
Mahesh
bi
Ruqayat
hi
Ruqayat
Hi fellas
Nyawa
hey
Sammol
hi
God
hello
Jahara
Good morning
Jorge
hi
abubakar
hi
Nmesoma
hi
Mahesh
Hi
Tom
Why is unemployment rate never zero at full employment?
Priyanka Reply
bcoz of existence of frictional unemployment in our economy.
Umashankar
what is flexible exchang rate?
poudel
due to existence of the pple with disabilities
Abdulraufu
the demand of a good rises, causing the demand for another good to fall
Rushawn Reply
is it possible to leave every good at the same level
Joseph
I don't think so. because check it, if the demand for chicken increases, people will no longer consume fish like they used to causing a fall in the demand for fish
Anuolu
is not really possible to let the value of a goods to be same at the same time.....
Salome
Suppose the inflation rate is 6%, does it mean that all the goods you purchase will cost 6% more than previous year? Provide with reasoning.
Geetha Reply
Not necessarily. To measure the inflation rate economists normally use an averaged price index of a basket of certain goods. So if you purchase goods included in the basket, you will notice that you pay 6% more, otherwise not necessarily.
Waeth
discus major problems of macroeconomics
Alii Reply
what is the problem of macroeconomics
Yoal
Economic growth Stable prices and low unemployment
Ephraim
explain inflationcause and itis degre
Miresa Reply
what is inflation
Getu
increase in general price levels
WEETO
Good day How do I calculate this question: C= 100+5yd G= 2000 T= 2000 I(planned)=200. Suppose the actual output is 3000. What is the level of planned expenditures at this level of output?
Chisomo Reply
how to calculate actual output?
Chisomo
how to calculate the equilibrium income
Beshir
Criteria for determining money supply
Thapase Reply
who we can define macroeconomics in one line
Muhammad
Aggregate demand
Mohammed
C=k100 +9y and i=k50.calculate the equilibrium level of output
Mercy Reply
Hi
Isiaka
Hi
Geli
hy
Man
👋
Bahunda
hy how are you?
Man
ys
Amisha
how are you guys
Sekou
f9 guys
Amisha
how are you guys
Sekou
ys am also fine
Amisha
fine and you guys
Geli
from Nepal
Amisha
nawalparasi district from belatari
Amisha
nd u
Amisha
I am Camara from Guinea west Africa... happy to meet you guys here
Sekou
ma management ho
Amisha
ahile becheclor ho
Amisha
hjr ktm bta ho ani k kaam grnu hunxa tw
Amisha
belatari
Amisha
1st year ho
Amisha
nd u
Amisha
ahh
Amisha
kaha biratnagar
Amisha
ys
Amisha
kina k vo
Amisha
money as unit of account means what?
Kalombe
A unit of account is something that can be used to value goods and services and make calculations
Jim
all of you please speak in English I can't understand you're language
Muhammad
I want to know how can we define macroeconomics in one line
Muhammad
it must be .9 or 0.9 no Mpc is greater than 1 Y=100+.9Y+50 Y-.9Y=150 0.1Y/0.1=150/0.1 Y=1500
Kalombe
Mercy is it clear?😋
Kalombe
hi can someone help me on this question If a negative shocks shifts the IS curve to the left, what type of policy do you suggest so as to stabilize the level of output? discuss your answer using appropriate graph.
Galge Reply
if interest rate is increased this will will reduce the level of income shifting the curve to the left ◀️
Kalombe
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics for ap® courses. OpenStax CNX. Nov 04, 2016 Download for free at https://legacy.cnx.org/content/col11844/1.14
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics for ap® courses' conversation and receive update notifications?

Ask