<< Chapter < Page Chapter >> Page >
Photograph of transformers installed in transmission lines.
Power is distributed over large distances at high voltage to reduce power loss in the transmission lines. The voltages generated at the power plant are stepped up by passive devices called transformers (see Transformers ) to 330,000 volts (or more in some places worldwide). At the point of use, the transformers reduce the voltage transmitted for safe residential and commercial use. (Credit: GeorgHH, Wikimedia Commons)

Power losses are less for high-voltage transmission

(a) What current is needed to transmit 100 MW of power at 200 kV? (b) What is the power dissipated by the transmission lines if they have a resistance of 1 . 00 Ω size 12{1 "." "00" %OMEGA } {} ? (c) What percentage of the power is lost in the transmission lines?

Strategy

We are given P ave = 100 MW size 12{P rSub { size 8{"ave"} } ="100"`"MW"} {} , V rms = 200 kV size 12{V rSub { size 8{"rms"} } ="200"`"kV"} {} , and the resistance of the lines is R = 1 . 00 Ω size 12{R=1 "." "00"` %OMEGA } {} . Using these givens, we can find the current flowing (from P = IV size 12{P = ital "IV"} {} ) and then the power dissipated in the lines ( P = I 2 R size 12{P = I rSup { size 8{2} } R} {} ), and we take the ratio to the total power transmitted.

Solution

To find the current, we rearrange the relationship P ave = I rms V rms size 12{P rSub { size 8{"ave"} } = I rSub { size 8{"rms"} } V rSub { size 8{"rms"} } } {} and substitute known values. This gives

I rms = P ave V rms = 100 × 10 6 W 200 × 10 3 V = 500 A . size 12{I rSub { size 8{"rms"} } = { {P rSub { size 8{"ave"} } } over {V rSub { size 8{"rms"} } } } = { {"100 " times " 10" rSup { size 8{6} } " W"} over {"200 " times " 10" rSup { size 8{3} } " V"} } =" 500 A"} {}

Solution

Knowing the current and given the resistance of the lines, the power dissipated in them is found from P ave = I rms 2 R size 12{P rSub { size 8{"ave"} } = I rSub { size 8{"rms"} } rSup { size 8{2} } R} {} . Substituting the known values gives

P ave = I rms 2 R = ( 500 A ) 2 ( 1 . 00 Ω ) = 250 kW . size 12{P rSub { size 8{"ave"} } = I rSub { size 8{"rms"} } rSup { size 8{2} } R = \( "500 A" \) rSup { size 8{2} } \( 1 "." "00 " %OMEGA \) =" 250 kW"} {}

Solution

The percent loss is the ratio of this lost power to the total or input power, multiplied by 100:

% loss= 250 kW 100 MW × 100 = 0 . 250 % . size 12{%" loss=" { {"250"" kW"} over {"100"" MW"} } ´"100"=0 "." "250 %"} {}

Discussion

One-fourth of a percent is an acceptable loss. Note that if 100 MW of power had been transmitted at 25 kV, then a current of 4000 A would have been needed. This would result in a power loss in the lines of 16.0 MW, or 16.0% rather than 0.250%. The lower the voltage, the more current is needed, and the greater the power loss in the fixed-resistance transmission lines. Of course, lower-resistance lines can be built, but this requires larger and more expensive wires. If superconducting lines could be economically produced, there would be no loss in the transmission lines at all. But, as we shall see in a later chapter, there is a limit to current in superconductors, too. In short, high voltages are more economical for transmitting power, and AC voltage is much easier to raise and lower, so that AC is used in most large-scale power distribution systems.

Got questions? Get instant answers now!

It is widely recognized that high voltages pose greater hazards than low voltages. But, in fact, some high voltages, such as those associated with common static electricity, can be harmless. So it is not voltage alone that determines a hazard. It is not so widely recognized that AC shocks are often more harmful than similar DC shocks. Thomas Edison thought that AC shocks were more harmful and set up a DC power-distribution system in New York City in the late 1800s. There were bitter fights, in particular between Edison and George Westinghouse and Nikola Tesla, who were advocating the use of AC in early power-distribution systems. AC has prevailed largely due to transformers and lower power losses with high-voltage transmission.

Questions & Answers

what is phylogeny
Odigie Reply
evolutionary history and relationship of an organism or group of organisms
AI-Robot
ok
Deng
what is biology
Hajah Reply
the study of living organisms and their interactions with one another and their environments
AI-Robot
cell is the smallest unit of the humanity biologically
Abraham
what is biology
Victoria Reply
what is biology
Abraham
HOW CAN MAN ORGAN FUNCTION
Alfred Reply
the diagram of the digestive system
Assiatu Reply
allimentary cannel
Ogenrwot
How does twins formed
William Reply
They formed in two ways first when one sperm and one egg are splited by mitosis or two sperm and two eggs join together
Oluwatobi
what is genetics
Josephine Reply
Genetics is the study of heredity
Misack
how does twins formed?
Misack
What is manual
Hassan Reply
discuss biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles
Joseph Reply
what is biology
Yousuf Reply
the study of living organisms and their interactions with one another and their environment.
Wine
discuss the biological phenomenon and provide pieces of evidence to show that it was responsible for the formation of eukaryotic organelles in an essay form
Joseph Reply
what is the blood cells
Shaker Reply
list any five characteristics of the blood cells
Shaker
lack electricity and its more savely than electronic microscope because its naturally by using of light
Abdullahi Reply
advantage of electronic microscope is easily and clearly while disadvantage is dangerous because its electronic. advantage of light microscope is savely and naturally by sun while disadvantage is not easily,means its not sharp and not clear
Abdullahi
cell theory state that every organisms composed of one or more cell,cell is the basic unit of life
Abdullahi
is like gone fail us
DENG
cells is the basic structure and functions of all living things
Ramadan
What is classification
ISCONT Reply
is organisms that are similar into groups called tara
Yamosa
in what situation (s) would be the use of a scanning electron microscope be ideal and why?
Kenna Reply
A scanning electron microscope (SEM) is ideal for situations requiring high-resolution imaging of surfaces. It is commonly used in materials science, biology, and geology to examine the topography and composition of samples at a nanoscale level. SEM is particularly useful for studying fine details,
Hilary
Biology is a branch of Natural science which deals/About living Organism.
Ahmedin Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 6

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College physics. OpenStax CNX. Jul 27, 2015 Download for free at http://legacy.cnx.org/content/col11406/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College physics' conversation and receive update notifications?

Ask